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Abstract The phase locking index (PLI) was introduced to
quantify in a statistical sense the phase synchronization of
two signals. It has been commonly used to process biosig-
nals. In this article, we investigate the PLI for measuring the
interdependency of cortical source signals (CSSs) recorded
in the Electroencephalogram (EEG). To this end, we consider
simple analytical models for the mapping of simulated CSSs
into the EEG. For these models, the PLI is investigated ana-
lytically and through numerical simulations. An evaluation is
made of the sensitivity of the PLI to the amount of crosstalk
between the sources through biological tissues of the head.
It is found that the PLI is a useful interdependency measure
for CSSs, especially when the amount of crosstalk is small.
Another common interdependency measure is the coherence.
A direct comparison of both measures has not been made in
the literature so far. We assess the performance of the PLI
and coherence for estimation and detection purposes based
on, respectively, a normalized variance and a novel statis-
tical measure termed contrast. Based on these performance
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measures, it is found that the PLI is similar or better than
the CM in most cases. This result is also confirmed through
analysis of EEGs recorded from epileptic patients.
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1 Introduction

The Electroencephalogram (EEG) results as a mapping
of brain signals into several channels. These channels are
recorded by electrodes located on the scalp (extracranial
EEG) or inside the brain (intracranial EEG). The EEG is
widely used for brain monitoring. To date, EEG analysis
is mainly based on visual inspection by human experts,
since available signal-processing methods (SPM) are not
completely satisfactory for automated detection and diagnos-
tics. Nevertheless, SPM can substantially complement visual
inspection and help to make EEG analysis objective (Lopes
da Silva 2004).

Most SPM involve computation of signal features in the
time and frequency domains. These features are typically
computed for each of the EEG channels and then combined
into a single statistic associated with the EEG epoch
(Gotman 1999). Other SPM are inspired by a growing evi-
dence of the brain as a complex network which may be in
one of several states (Lopes da Silva et al. 2003; Bassett
and Bullmore 2006). These states may be better described
in terms of interactions between different parts of the net-
work, than in terms of individual characteristics of these
parts. Hence, interdependencies of EEG channels might bet-
ter describe the state of the brain than the features computed
for each of the channels (Bassett and Bullmore 2006).
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In this article, we restrict ourselves to the simplest
possible case, viz. to interdependencies between only two
signals. Corresponding SPM are referred to as bivariate SPM
(bSPM). Two families of bSPM are typically distinguished
that account for linear and nonlinear interdependencies:

– Linear bSPM are based on the cross-correlation function
or on the coherence function. These functions are defined
for pairs of signals in time (cross-correlation) or in fre-
quency domains (Nunez et al. 1997; Nolte et al. 2004).

– Nonlinear bSPM involve mutual information
(Quian Quiroga et al. 2002), nonlinear regression (Pijn
1990; Wendling et al. 2001), methods based on mutual
phase locking and synchronization (Tass et al. 1998;
Chavez et al. 2003; Stam et al. 2007), polyspectra meth-
ods, and a family of methods based on nonlinear dynamics
(Kantz and Schreiber 2004; Stam 2005). It should also be
noted that there is a hierarchy of (nonlinear) types of syn-
chronization (from complete to lag to phase to general-
ized synchronization) which makes the relations between
the various nonlinear synchronization measures not quite
arbitrary. Each of the nonlinear bSPM accounts for a par-
ticular nonlinear interdependency but can assess the linear
interdependency as well.

The usefulness of bSPM for EEG analysis was proved exper-
imentally for different cognitive tasks as well as for patho-
logical epileptic states. It was shown that bSPM can extract
information which is not accessible by visual inspection
(Nunez et al. 1997; Quian Quiroga et al. 2002; Stam 2005;
Pereda et al. 2005). Most comparative studies agree that the
performance difference of linear and nonlinear bSPM is mod-
erate (Ansari-Asl et al. 2006; Kreuz et al. 2007) with a slight
improvement for nonlinear ones (Pijn 1990; Wendling et al.
2001).

In this article, we investigate a measure called the phase
locking index (PLI), which is associated with the nonlinear
bSPM. The PLI emerged from theoretical studies of oscil-
lating (chaotic) systems with couplings. The PLI is based
on the notion of phase synchronization. It was developed
to quantify in a statistical sense the phase synchronization
of such systems from experimental data and, thereby, to
characterize their coupling (Rosenblum et al. 1996, 2001).
Phase synchronization implies the existence of a relationship
between phases of two weakly interacting (coupled) systems,
whereas the amplitudes may remain uncorrelated. Irregular-
ity of amplitudes can mask the phase relationship so that
traditional techniques treating not the phases but the signals
themselves may be less sensitive in the detection of the sys-
tems’ interaction, see examples in (Rosenblum et al. 1996,
2001).

It should be noted that the measure does not have a
conventional name and is also referred to as “mean phase

coherence” (Stam et al. 2007; Mormann et al. 2003; Ansari-
Asl et al. 2006), “phase locking value”, “intensity of the first
Fourier mode of the phase distribution” (Rosenblum et al.
2001) or “phase synchronization index” (Tass et al. 1998). We
adapt the name “phase locking index” (PLI) from (Chavez
et al. 2003) since, to our opinion, this name reflects most
precisely the nature of the measure.

The PLI has a short history in biosignal analysis com-
pared to e.g., the coherence function. Nevertheless, the PLI
was already used for many types of biosignals such as: MEG
and EMG (Tass et al. 1998), ECG (Rosenblum et al. 2001),
fMRI (Laird et al. 2002) and EEG. For the EEG, it was
mainly used in relation to epilepsy (Chavez et al. 2003;
Mormann et al. 2003). Furthermore, the PLI was used to
obtain insights about anesthesia (Koskinen et al. 2001) and
migraine. The following evidence can be viewed as a ratio-
nale for its use in EEG analysis.

A number of papers agree that a dynamical linkage of
brain structures occurs via oscillatory couplings, suggesting
that the brain is a complex oscillatory network, see (Lopes
da Silva et al. 2003) and references therein. The cerebral
cortex, for instance, was shown to form an oscillatory loop
with the thalamus. Under some pathological conditions, this
loop may manifest cortico-thalamic resonance and lead to
an epileptic seizure that can be observed as a repetitive
spike-and-wave pattern in the EEG (Steriade 2000). Alpha
waves, sleep spindles and many other EEG patterns, includ-
ing most of the epileptic ones, are quasi-periodic and occur
in several EEG channels, possibly with a mutual delay. Fur-
thermore, a number of modeling studies explained some pat-
terns in the brain signals by means of mathematical nonlinear
oscillators: see a review in (Wright and Liley 1995) and more
recent publications (Wendling et al. 2001; Suffczynski et al.
2004; David and Friston 2003). Taken together, these experi-
mental and modeling results suggest that the brain network is
partly oscillatory. The PLI perfectly fits to this “oscillatory”
view of the brain, since it is designed for such systems.

Although the PLI is widely used in EEG analysis, it has
to our knowledge not been investigated thoroughly:

(1) Practical use of the PLI typically involves filtering and
windowing of sampled signals. These operations may
significantly affect the PLI and lead to misinterpreta-
tions of the EEG. The dependence of the PLI on the
filter and window properties has not been analyzed.

(2) The sensitivity of the PLI to noise and artifacts has
not been evaluated analytically, but only assessed using
simulations (Ansari-Asl et al. 2006; Porta et al. 2004;
Kreuz et al. 2007).

(3) The influence of crosstalk between the sources through
biological tissues of the head, known as the volume
conduction effect, has not been evaluated. (Although
the impact of the sources located distant from the
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electrodes can be reduced, e.g., by a proper choice of
the EEG reference, some residual amount of crosstalk
is always present that may significantly affect measure-
ments (Nunez et al. 1997; Sazonov et al. 2007a; Guevara
et al. 2005).

(4) No rigorous comparison of the PLI with other (clas-
sical) measures of the interdependency such as those
based on the correlation function or on the coherence
function has yet been reported. Therefore, the choice of
a particular method is often subjective.

In this article, we address the aforementioned issues in order
to investigate the PLI as a measure of interdependency of
cortical source signals (CSSs) via the EEG. We determine
guidelines and constraints for practical use of the PLI. Fur-
thermore, the PLI is compared with the coherence measure
(CM) which is based on the coherence function associated
with the linear bSPM. The CM is a relevant reference for the
comparison since it is widely used for EEG analysis and, just
as the PLI, is independent of phase shifts in the signals.

In order to assess relationships between the PLI computed
for the scalp EEG and the underlying CSSs, we need to know
the CSSs. In practice, it is difficult, or even impossible, to
measure individual CSSs. Thus, there is no reliable experi-
mental reference to compare results against. This motivates
us to use analytical models and simulations instead. To this
end, we define and use two models for CSS mixtures in the
EEG: (1) a simple model M1 having two sources with mutual
crosstalk controlled by a parameter and (2) a more realis-
tic model M2 having multiple sources with crosstalk deter-
mined by properties of a spherical volume conductor and by
a recording procedure. In both models, the source signals are
mapped into EEG channels which are used to compute the
PLI and CM.

The sensitivity of the PLI to noise, to the number of
samples in the signals, to the bandwidth of the signals and to
the amount of crosstalk between them can be described by the
probability density function (PDF) of the measured PLI. The
mean and variance, as well as all other statistics of the PLI,
can be computed using this PDF. This function is, however,
mathematically intractable. For this reason, we use instead
the approximate probability distribution function (APDF) of
the PLI that is derived for the simplest mixture model M1
and for different level of noise in the signals (Sazonov et al.
2007b). We evaluate the accuracy of the APDF through a
comparison of the analytically obtained mean and variance
of the PLI with its mean and variance computed numerically
using Monte Carlo simulations. The mean is associated with
the interdependency of the source signals and the variance
characterizes statistical uncertainty of each single measure-
ment. The simulations show that the APDF a good approxi-
mation of the true PDF for different source signals and thus
can be used for practical intents and purposes.

We investigate through the simulations and compare
qualitatively, how crosstalk of the sources affects the PLI and
CM. It is found that both measures are sensitive to the amount
of crosstalk, which is in line with other studies (Nunez et al.
1997; Stam et al. 2007; Guevara et al. 2005). However, we
conclude that the PLI (as well as the CM) can be used as an
interdependency measure for CSSs in most practical situa-
tions, for EEGs recorded with a proper reference.

Furthermore, a comparison of the PLI and CM is made
that is based on two statistical performance measures termed
normalized variance (NV) and contrast. The NV assesses the
performance of each measure for estimation purposes and the
contrast assesses the performances for detection purposes,
see Sect. 4 for details. The NV and contrast are computed
using both CSS-mixture models for different source signals.
It is found that the PLI is better compared to CM in terms of
these measures in most simulations. Thus, we conclude that
the PLI is an appropriate measure for estimation as well as
detection purposes in assessing interdependencies of CSSs.

Finally, we assess the relevance of the PLI and CM for
the detection problem using physiological EEGs recorded
from epileptic patients. Qualitative as well as quantitative
results are presented for these EEGs. It is shown that the PLI
has slightly better performance than the CM for detection
of epileptic seizures, which is in agreement with theoretical
predictions.

The remainder of this paper is organized as follows. In
Sect. 2 the analytical models and underlying assumptions
are explained in detail. Section 3 describes the PLI and CM.
Next, Sect. 4 describes intuitive requirements for an interde-
pendency measure. The same section describes the NV and
contrast. In Sect. 5, the PLI and CM are investigated in terms
of the mean and variance. Then in Sect. 6, the PLI and CM
are compared in terms of the NV and contrast. In Sect. 7, the
PLI and CM are compared using epileptic EEGs. Finally, the
discussion and conclusions are provided in Sect. 8.

2 Models

2.1 Physiological considerations

We investigate the PLI using models for the CSS mixture in
the EEG. To build these models, we use the following physio-
logical considerations. We assume that cortical areas located
below the recording electrodes are the main sources for the
EEG. Within each cortical area q, neurons can be partitioned
into two subsets: Pq Pq = Pq1 ∪ Pq2. Neurons Pq1 function
independently and generate spontaneous background signals
that are different for different areas. We assume that the back-
ground signals for different areas are mutually independent
and have the same power.
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Neurons Pq2 are involved in oscillatory coupling, e.g.,
through reciprocal connections with the thalamus, under con-
trol of the brain stem and forebrain modulatory systems
(Steriade 2000). The amount of neurons Pq2 for an area q
depends on the coupling and is zero for uncoupled areas.
Coupled neurons Pq2 are synchronized in their discharging
time instants. Since the coupling is oscillatory, the joint neu-
ronal signal is oscillatory as well and has a prominent spectral
peak corresponding to fundamental frequency f0. As with
all characteristics of biological systems, f0 may fluctuate in
time. However, we assume that it remains within a subband
of width � for a given time period. Furthermore, we assume
that the power spectrum of the background signal of Pq1 can
be treated as approximately flat in this subband.

In order to extract signals corresponding to Pq2 and to
analyze the interdependencies between areas q, the EEG is
typically bandpass filtered (Chavez et al. 2003; Ansari-Asl
et al. 2006). Since the exact value of f0 depends on the state
of the brain and is a priori unknown, the EEG is typically
decomposed into multiple overlapping subbands, e.g., each
having bandwidth �. Signals in these subbands can be ana-
lyzed separately and then the results can be combined. For
instance, interdependency between two areas can be associ-
ated with the largest PLI computed for each of the subbands.

Although each electrode reflects primarily a signal of a
source located exactly below the electrode (we assume that
most of the neurons in the excited cortical area are oriented
towards the surface, which is a reasonable assumption
(Nunez et al. 1997), crosstalk from other sources exists that
is caused by propagation of their signals through biological
tissues of the head in the form of electrical fields. The amount
of crosstalk can be substantially reduced by a proper choice
of the EEG reference, but it can remain sufficiently large to
obscure measurements (Nunez et al. 1997; Sazonov et al.
2007a).

2.2 Analytical models

2.2.1 CSS model

The physiological considerations described above, motivate
us to use the following analytical models. We model the CSS
for each source q by a signal xq [k] in a single subband of
width �, where k = 1, . . . , K is a discrete time index, K is a
number of samples. This subband corresponds to a bandpass
filtered EEG. Each xq [k] contains a passband Gaussian noise
signal nq [k], which mimics the background signal of Pq1,
and may also contain a sinusoidal signal sq [k] of frequency
f0 , which mimics the oscillatory signal of Pq2. We use the
sine wave since it is a good first approximation of any oscil-
latory signal and thus can naturally be used to model it when
no or little information is available. We denote the sampling
frequency of the CSSs as fs and the center frequency of the

subband as fc. We assume that fs is sufficiently high to avoid
aliasing.

The model for the CSS is described by the following for-
mula:

xq [k]

�=

⎧
⎪⎪⎨

⎪⎪⎩

nq [k] , if source q is uncoupled with any
other source;

nq [k] + sq [k] , if source q is coupled
with one or more other sources,

(1)

where nq [k] is a passband Gaussian noise signal with mean 0,
variance σ 2 and bandwidth �, and

sq [k]
�= Aq sin

(
2πk f0/ fs + θq

)
, (2)

where Aq > 0 is an amplitude, θq is a phase shift and q =
1, . . . , Q is a source index. We assume that signals nq are
mutually independent and have equal variance for all sources
q. For a source q, we define the signal-to-noise ratio (SNR)
in xq as

SNRq
�=

〈
s2

q [k]
〉

k〈
n2

q [k]
〉

k

, (3)

where 〈·〉k indicates time-average. Without loss of generality,

we set σ 2
(
nq

) �= 1/2 for all q. In this case, SNRq can be
changed by varying Aq in sq and simplifies to:

SNRq

=
{

0, if source q is uncoupled with any other source;

A2
q , if source q is coupled with one or more other sources.

Here we recall that signal sq is present in xq if and only if the
source q is coupled with one or more other sources, see (1).

2.2.2 Mixing model M1

Signals xq are used in two models for the CSS mixture in
the EEG. The simplest model M1 includes only two sources
q = 1, 2 with mutual crosstalk, and is defined by the follow-
ing formula:
{

c1 [k]
�= x1 [k] + αx2 [k] ;

c2 [k]
�= αx1 [k] + x2 [k] ,

(4)

where cq , q = 1, 2 are signals of the EEG channels, and con-
stant α determines the amount of crosstalk. A block diagram
for M1 is shown in Fig. 1a. For the model M1, the PLI and
CM can be computed analytically as well as numerically.

2.2.3 Mixing model M2

A more realistic model M2 is used to mimic crosstalk of
multiple sources, see Fig. 1b. This model is not tractable
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Fig. 1 A block diagram for the
CSS mixture models M1 and
M2. The arrows show directions
of signal propagations. Different
parts of the model are explained
on the right. See the text for
further details
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α α
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mathematically and therefore it is used only for numerical
simulations. In this model, 19 sources q = 1, . . . , 19 are
located in a spherical volume conductor (VC). The VC has
four layers with different conductivities which mimic the
brain, dura, skull, and skin. The VC is described in detail
in (Sazonov et al. 2007a). The sources are located at 17 mm
depth from the surface of the VC, exactly below the posi-
tions corresponding to the basic 19 electrodes of the standard
10–20 system. EEG signals cq , q = 1, 2 are obtained by
solving the forward problem and using the Hjorth Laplacian
reference so as to mimic the EEG recording procedure. The
Hjorth Laplacian reference (Hjorth 1975) effectively reduces
the impact of the sources located distant to the recording
electrodes, is easy to implement, and is widely used (Nunez
et al. 1997; Sazonov et al. 2007a).

We note that although the model contains 19 sources, it
generates only two signals cq , q = 1, 2, just as M1 (i.e., only
two EEG channels are “recorded”). These two signals are
associated with two sources located below the correspond-
ing electrodes.

We model two situations separately. First, the signals cq ,

q = 1, 2 are recorded at neighboring electrodes, and sec-
ond, they are recorded at distantly spaced electrodes. In both
situations, the electrodes are chosen to correspond to the larg-
est amount of crosstalk between the recorded sources. Addi-
tionally L other sources are involved in the coupling, i.e., in
total L + 2 sources generate signals sq . We consider values
L = {0, . . . , 5}. These additional L sources are located so
as to have the largest crosstalk with the recorded sources,
which corresponds to the worst-case scenario. Other param-
eters used in the simulations are described in Sect. 5.2 (for
M1) and Sect. 6 (for M2).

3 Measures of interdependency

3.1 Phase synchronization and the phase locking index

The PLI was developed to quantify phase synchronization
of oscillatory systems from experimental data. For signals,
phase synchronization is typically measured in two steps:

(a) estimation of instantaneous phases of the signals, and (b)
statistical quantification of a phase relationship (Rosenblum
et al. 2001).

For the first step, two common methods can be distin-
guished in the literature. These methods are the convolu-
tion of the signals with a complex wavelet, and the Hilbert
transform. Both methods provide unambiguous complex-
valued representations of the real-valued signals that can be
used to obtain the phase. The previously reported differences
between these two methods are minor, and the methods were
concluded to be equivalent for neuro-signals (Quian Quiroga
et al. 2002).

For a complex-valued signal c, the instantaneous phase ϕ

can be obtained analytically: ϕ
�= Im (ln (c)). For two peri-

odic signals c1 and c2 with fundamental frequencies f1 and
f2 that are related as f1 ≈ f2, phase synchronization can be
described as a phase locking condition |ϕ1 − ϕ2| < C, where
C is some constant (see Rosenblum et al. 2001) for analyti-
cal justification and generalization for the case n f1 ≈ m f2,
where n and m are some integers). Such synchronization may
exist when the noise is negligible. If the noise is strong or
if the signals are chaotic, large phase fluctuations and rapid
2π phase jumps (phase slips) may be observed and the phase
locking condition may not be fulfilled. In this case, phase
synchronization should be treated in a statistical sense. It was
shown that the presence of a dominant peak in the distribu-

tion of the cyclic relative phase �
�= (nϕ1 − mϕ2) mod 2π

can be understood as a phase synchronization in a statisti-
cal sense (Tass et al. 1998; Rosenblum et al. 2001). Several
methods were proposed to quantify the distribution of �. We
use the PLI described in (Chavez et al. 2003) since it is most
widely used. The PLI is defined as:

γ
�=

∣
∣
∣

〈
e j�[k]

〉

k

∣
∣
∣ , (5)

where 〈·〉k means time average.
In case of strong synchronization between the signals, γ

is close to one. If synchronization is weak, then γ has a small
value. It should be noted that γ is sensitive only to the phases
of the signals.
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3.2 Linear interdependency measures

Let us consider finite length digital (complex- or real-valued)
signals c1 [k] and c2 [k], where k = 1, . . . , K is a discrete
time index. Let C1 [l] and C2 [l] be the results of the dis-
crete Fourier transformation (DFT) for these signals, where
l = 1, . . . , K is an index for the frequency bins in the Fourier
domain.

One of the most widely used linear interdependency mea-
sures is the correlation coefficient defined as:

r
�=

∣
∣
∣
∣

S12√
S11S22

∣
∣
∣
∣ , (6)

where Spq
�=

〈(
cp [k] − µ

(
cp

)) (
c∗

q [k] − µ
(

c∗
q

))〉

k
is the

sample covariance for cp and cq , p, q ∈ {1, 2} if p �= q, or

the variance if p = q, µ
(
cp

) �= 〈
cp [k]

〉

k is the mean and
(·)∗ is the complex conjugate.

The correlation coefficient is strongly related to another
widely used linear interdependency measure called coher-
ence (Nunez et al. 1997; Ansari-Asl et al. 2005). The CM is
based on the coherence function defined as:

G12 [l]
�= |P12 [l]|√|P11 [l]| |P22 [l]| , (7)

where Ppq [l] is the cross power spectral density for cp and
cq , p, q ∈ {1, 2} if p �= q, or the power spectral density if
p = q, l = 1, . . . , K is a frequency bin index. The spectral

densities are defined as Ppq [l]
�= E

(
C (n)

p [l] C (n)∗
q [l]

)
, p, q

∈ {1, 2}, where E denotes the expectation for different real-
izations of the signals denoted by the superscript (n).

For many practical applications, only a single realiza-
tion of cp and cq is available. In this case, Ppq is typically
estimated using, e.g., the periodogram method (or Welch’s
method). To this end, each signal cq [k] , q = 1, 2, k =
1, . . . , K is divided into N successive possibly overlapping

mini-epochs c(n)
q [k]

�= c
[
k+nK ′] , k = 1, . . . , K ′, K ′ <

K , n = 1, . . . , N with N denoting the total number of the
mini-epochs. We denote the result of the DFT for c(n)

q [k] as

Ĉ (n)
q [l] , l = 1, . . . , K ′. Then the Welch estimate of Ppq [l] ,

l = 1, . . . , K is given by P̂pq [l]
�= 1

N

∑N
n=1

(
Ĉ (n)

p [l]

Ĉ (n)∗
q [l]

)
, l = 1, . . . , K ′.

For G [l] , l = 1, . . . , K defined by (7), an estimate Ĝ [l] ,

l = 1, . . . , K ′ can be obtained by replacing Pi j [l] , l =
1, . . . , K with P̂i j [l] , l = 1, . . . , K ′ in (7). The value of
Ĝ [l] computed for a fixed frequency bin or integrated
(averaged) across several neighboring bins is typically used
as a measure of interdependency associated with the
corresponding frequency band (Nunez et al. 1997; Ansari-

Asl et al. 2006). Thus, the CM is defined as:

g
�= 1

l1 − l0

l1∑

l=l0

Ĝ [l]. (8)

Both measures r and g have range [0 . . . 1], just as the PLI,
and can be naturally associated with linear interdependency.
For narrow band signals that are in phase, it was shown
that r and g are very similar (Ansari-Asl et al. 2005). The
major difference between the measures is that g is completely
insensitive to constant phase differences between the signals.
Indeed, in (7) the phases are removed by the modulus opera-
tors before the cross-product is taken, but in (6) the modulus
is taken after calculating of the cross-product. This motivates
us to use g as a basis for comparisons with the PLI, which is
also insensitive to the constant phase differences.

3.3 Procedures

In practice, EEGs are typically analyzed in short epochs and
in narrow bands. We mimic this common approach in this
paper: the PLI and CM are computed for epochs of length
T = 10 s and bandwidth � = 2 Hz. The motivation for
these choices is as follows. Long epochs may contain sig-
nals recorded for the brain being in more than one state. On
the other hand, short epochs contain small amounts of data
for analysis. We choose a typical epoch length T = 10 s
that is widely used for visual inspection as well as for auto-
mated analysis of epileptic EEGs. This length corresponds
to the minimal duration of an epileptic seizure, at least for
the majority of epileptic patients. Moreover, this length is
sufficiently small so that different phases of a typical sei-
zure, which lasts about 30–60 s, can be captured. Thus, the
onset, middle, and ending phases of such a seizure can be
analyzed separately (Lopes da Silva 2004). We fix � to
2 Hz, which is a commonly used bandwidth for analysis of
interdependencies in the EEG (Chavez et al. 2003; Ansari-
Asl et al. 2005). It appears that this bandwidth is sufficiently
large to capture natural fluctuations of the dominant fre-
quency f0 and yet sufficiently narrow to approximate the
spectrum of the background signal as flat.

Prior to computation of the PLI, a filter is applied in the
frequency domain that attenuates all frequencies outside the
passband and performs the Hilbert transform. In this way,
the filter converts the epoch signal into a narrow band ana-
lytical signal. The latter can be directly used to compute the
PLI using (5). Prior to computation of the CM, the epoch
is divided into mini-epochs of 1 s length using a Hamming
window. These mini-epochs are used to compute estimate
Ĝ [l] of the coherence function G [l]. The CM can be com-
puted using (8), for given Ĝ [l]. The length of the mini-epoch
is chosen so that each frequency bin l has width equal to
�� = 1 Hz and frequencies up to 1 Hz can be resolved.
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The smallest epoch size guaranties that the largest number
of mini-epochs is used to compute Ĝ [l] and thus Ĝ [l] is
the most accurate estimate of G [l] for the given frequency
resolution. The overlap of two successive mini-epochs is
fixed at 50% which is found to be a good choice (Ansari-Asl
et al. 2005). The mini-epochs are selected using a Hamming
window in order to reduce spectral leakage. We note that the
frequency response of the Hamming window has a broader
main lobe than that of the rectangular window, which results
in a net reduction of the frequency resolution. We also note
that the PLI is less sensitive to this effect since the epoch
used to compute the PLI yields higher frequency resolution
compared to the mini-epoch used to compute the CM.

4 Performance measures

Since the statistical properties of the PLI are different from
those of the CM, these measures cannot be compared directly.
To facilitate their comparison, we introduce two statistical
performance measures called normalized variance (NV) and
contrast. Let us denote an interdependency measure (such as
the PLI or the CM) as λ. We assume that λ has a normalized
range [0 . . . 1], which is indeed the case for the PLI as well
as CM. Furthermore, we associate the mean µ (λ) with the
amount of interdependency and the variance σ 2 (λ) with the
amount of uncertainty of a single measurement.

4.1 Normalized variance

Let us first consider an estimation problem of µ (λ) for the
case of two source signals with SNRq > 0, q = 1, 2, defined
by (3). A measure having the largest µ and the smallest σ 2

is the most appropriate for the estimation since the estimated
quantity µ is the largest compared to the amount of uncer-
tainty σ 2. However, a comparison may be difficult for arbi-
trary µ and σ 2.

To facilitate the comparison, we normalize each λ so that
µ (λ) becomes equal to 1. Then, different measures can be
compared based on their normalized variances. (An equiv-
alent approach is to make variances equal to 1 and to com-
pare mean values. We do not use higher order statistics, e.g.,
skewness, for simplicity of the comparison.) The PDFs are
compared based on their ‘width’ that is characterized by the
NV. The NV for λ can be computed as:

σ̂ 2 (λ)

∣
∣
∣
SNR1, SNR2

�= σ 2 (λ)

µ2 (λ)

∣
∣
∣
∣
SNR1, SNR2

, (9)

where SNR1 and SNR2 are a priori given [corresponding to
the assumption that Aq and σ 2 are a priori known in signals
xq , see (1)]. An interdependency measure λ with the smallest
σ̂ (λ) is most appropriate for estimation purposes, for given
SNRs. The NV does not expose, however, performance of

λ for detection purposes, e.g., when two different situations
should be discriminated. This motivates us to define another
performance measure called contrast.

4.2 Contrast

In practice, measured interdependencies are often used for
detection of couplings between different brain sources. These
couplings can be associated with functional integration of
the corresponding brain structures and used to determine the
state of the brain (Lopes da Silva et al. 2003). Two situ-
ations are especially important for this detection problem:
(1) CSSs are completely independent of each other, and (2)
CSSs are mutually interdependent. A fair interdependency
measure should reliably discriminate these two situations in
a practical range of SNR. In practice, a significance level
is usually estimated and used to discriminate the situations.
This significance level accounts for, e.g., crosstalk of the
sources.

Let us consider a scenario when only four situations are
possible, namely (a) SNR1 = SNR2 = 0, (b) SNR1 = 0,

SNR2 > 0, (c) SNR1 > 0, SNR2 = 0, and (d) SNR1 > 0,

SNR2 > 0, where SNRq , q = 1, 2 is defined by (3). We are
interested in discriminating cases (a), (b), (c) from (d). For
this purpose, we define the two hypotheses as:

H0:

⎧
⎪⎪⎨

⎪⎪⎩

a) SNR1 = SNR2 = 0 or

b) SNR1 = 0, SNR2 > 0 or

c) SNR1 > 0, SNR2 = 0;
H1: d) SNR1 > 0, SNR2 > 0.

(10)

Since (b) is the most difficult case to discriminate from
(d), and (c) is simply a symmetric case of (b), we will use
it in H0 as a part of the worst case scenario. We note that
H0 and H1 defined by (10) are not practical since a very low
SNR is impossible to distinguish from SNR = 0. However,
the hypotheses are useful for theoretical analyses.

For an interdependency measure generally denoted by λ,
we denote as λi the same measure when a hypothesis Hi, i =
0, 1, is true. It is desirable that λ satisfies the following intu-
itive requirements:

(1) λ0 is equal or close to zero (and asymptotically
approaches zero in the absence of crosstalk and for a
large number of samples K in xq );

(2) λ1 > 0, is a smooth and monotonically increasing func-
tion of max {SNR1, SNR2}.

Furthermore, an interdependency measure that fulfills these
requirements, and that can better discriminate H0 and H1
(with some statistical confidence) can be considered as the
most appropriate for the detection problem. Hence, the mea-
sures can be compared in terms of their discriminating power.
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Fig. 2 Examples of two situations for η: a η > 1, hypotheses H0 and
H1 can be reliably distinguished when assessed by λ; b η < 1, H0 and
H1 cannot be reliably distinguished

To this end, we define a statistical measure called
contrast. The contrast characterizes how discernible H0 and
H1 are when assessed by λ. For given SNR, the contrast η is
defined as:

η (λ)|SNR1, SNR2

�= µ (λ1) − 2σ (λ1)

µ (λ0) + 2σ (λ0)

∣
∣
∣
∣
SNR1, SNR2

, (11)

If η (λ) ≤ 1 then H0 cannot be distinguished reliably from
H1 when assessed by λ. The use of a 2σ margin in (11) gives
us the statistical confidence that when η is large, the dis-
criminating ability of H0 and H1 is high. The 2σ margin is
used since it corresponds to the conventional 95% confidence
bound for the Gaussian distribution1, i.e., η = 1 corresponds
to adetection error of 5%. Two situations for η > 1 and η < 1
are illustrated in Fig. 2 for given SNR.

The contrast as well as the NV are computed for a pri-
ori known SNR. Since in most practical situations SNR is
a priori unknown, these performance measures can only be
computed using models and simulations. However, a working
range of SNR can be estimated for many practical situations.
If the range is given, then an interdependency measure with
a better performance for this range can be selected based on
results of the simulations. Furthermore, the contrast shows
how reliable the hypotheses can be discriminated for differ-
ent configurations of the models (e.g., for different sources
configurations). This knowledge can be useful in practical
situations e.g., to determine reliability of detection methods.

5 Investigation of the PLI

5.1 Model M1: analytical results

We analyze the PDF of the PLI for the model M1. Since the
exact analysis is mathematically intractable, we use approx-
imations. For the analysis we use the equivalent base band
signals (BESs) as explained in this section below.

1 In general, however, the distribution of λ may not be Gaussian.

5.1.1 Equivalent baseband signals

In order to make the model for the CSS mathematically
tractable, we transform the signals into BESs (without any
loss of generality). Let us denote the BESs by the same letters
but with tilde. For simplicity of notation, we omit the time
index k when it is possible. The transformation of a real-val-
ued passband signal into the BES is described in detail in
(Sazonov et al. 2007b). Here we summarize it as follows.
First, we remove all negative frequencies and double ampli-
tudes of the positive ones in the frequency domain. The result
is called the analytical signal and is typically obtained using
the Hilbert transform. Second, we shift all frequencies down-
wards so that center frequency fc of the shifted subband
becomes zero. This shift can be accomplished by multipli-
cation of the signal with a complex exponential. Third, we
perform downsampling by a factor of G = fs/� which is
equivalent to changing the periodicity of the spectrum to a
fundamental interval of width f̃s = fs/G = �.

As the result of this transformation, passband Gaussian
noise nq becomes a complex-valued white Gaussian noise
ñq , and the sinusoid sq becomes complex exponential s̃q with
different (shifted) fundamental frequency f̃0 = f0 − fc. The
sampling frequency of the BESs is f̃s = �. We note that the
power and the amount of information in xq are fully preserved
after its transformation into the baseband signal x̃q . Simula-
tions indeed show qualitatively the same results for the PLI
computed using either x̃q or xq . Furthermore, formulas (1),
(3) and (4) can be extended to the BESs through replacement
of the passband signals by their baseband equivalents.

5.1.2 Bandwidth and effective number of samples

The bandwidth � is an important parameter for EEG analysis
and, in this case, it determines the sampling frequency for the
BESs fs = �. Another relevant parameter is the duration of
the EEG epoch, denoted by T . Parameters T and � are invari-
ant with respect to the signal transformation into the BES.
In the BESs, these parameters together determine number of
data samples K̃ : K̃ = T f̃s = T �. For instance, a single
channel of a typical EEG epoch with T = 10 s and � = 2 Hz
and fs = 200 Hz contains K = T fs = 2000 samples, while
an equivalent baseband signal contains only K̃ = T � = 20
samples and K̃ is independent of fs . The larger number of
samples in real-valued passband signal x̃q carries no extra
information, i.e., many samples in x̃q are redundant. This
property plays an important role in practical applications.
Since the instantaneous phase has physical meaning for nar-
row band signals only, � is typically chosen small. If T is not
sufficiently large, then K̃ = T � is also small. In this case,
a large interdependency computed between signals is rather
an artifact caused by the wrong choice of � and T than a
reflection of an underlying brain. This artifact can lead to the
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so-called “spurious detection” of phase synchronization (Xu
et al. 2006).

5.1.3 PDF in the absence of crosstalk

For the sake of simplicity we omit tildes in notations for the
BESs in the remainder of this section. The analysis is per-
formed for BESs cq , q = 1, 2 of model M1 defined by (4) in
the absence of crosstalk (i.e., α = 0, cq = xq) and for a suf-
ficiently large number of samples K = T �. Mathematical
derivations are provided in Appendix A and in our conference
paper (Sazonov et al. 2007b). An APDF of γ defined by (5),
D1 (γ ) is derived for high SNR in xq , Aq � σ 2

(
nq

)
, q =

1, 2, and a sufficiently large number of samples K :

D1 = K

σR
√

2π

⎛

⎝e
−(γ−µ)2 K

2σ2
R + e

−(γ+µ)2 K

2σ2
R

⎞

⎠ , γ ≥ 0, (12)

where µ = e− σ2(ν)
2 , σ 2

R = 1
2

(
1 − e−σ 2(ν)

)2
, and σ 2 (ν) =

σ 2(n1)

A2
1

+ σ 2(n2)

A2
2

, see Appendix A for details. Furthermore, σ 2
R

and µ are mutually related as: σ 2
R = 1

2

(
1 − µ2

)2
.

For the case SNR = 0, i.e., the exponential signals are
absent, Aq = 0, the PDF D2 is given by a Rayleigh dis-
tribution (no approximations are used, see (Sazonov et al.
2007b)):

D2 = 2Kγ e−γ 2 K , γ ≥ 0. (13)

The (A)PDFs D1 and D2 are derived for two opposite cases,
respectively Aq � σ 2

(
nq

)
and Aq = 0. We will evaluate

the accuracies of the (A)PDFs in a wide SNR range by means
of Monte Carlo simulations in order to show that D1 is also
a fair approximation for the case Aq ∼ σ 2

(
nq

)
.

5.1.4 PDF in the presence of crosstalk

Let us now investigate how crosstalk between the sources
affects APDF D1. For α > 0, each signal cq of the model
can be rewritten in the following way:

cq = sq + nq + α
(
sp + n p

) = (
sq + αsp

) + (
nq + αn p

)

= ŝq + n̂q , (14)

where ŝq
�= sq + αsp is an oscillatory component with the

same frequency as sq but different amplitude and phase, and

n̂q
�= nq + αn p is a white Guassian noise signal with µ = 0

and σ 2 = σ 2
(
nq

) + ασ 2
(
n p

)
, p = 1, 2, q = 1, 2, p �= q.

It can be shown that in this case σ 2 (v) [used for µ and σ 2
R

in (12)] is σ 2 (v) = σ 2(n̂1)
A2

1
+ σ 2(n̂2)

A2
2

. Thus, (14) and D1 (γ )

defined by (12) together expose the sensitivity of the PLI to
the amount of crosstalk between the signals.

5.1.5 Accuracy of the (A)PDF

The (A)PDFs D1 and D2 describe the PLI statistically, i.e.,
the mean and variance as well as other statistics of the PLI
can be obtained from it for given SNR and K . In order to
assess the accuracy of D1 and D2 and we compare the mean
and variance obtained analytically from (12) and (13) with
the mean and variance obtained numerically using Monte
Carlo simulations with 1,000 realizations of the baseband
signals xq . For this comparison, we fix K = T fs = 20,
the choice of which corresponds to a typical bandpass fil-
tered signal of 10 s length, see Sect. 4.1. For larger values of
K , however, the accuracy is improved. The SNR range used
for the comparison is SNR ∈ [−20, . . . , 20] dB. Such broad
SNR range is chosen for illustration purposes to show the
asymptotic limits. The lowest SNR = −20 dB corresponds
to e.g., the very onset of a focal epileptic seizure. The highest
SNR = 20 dB corresponds to e.g., spike-and-wave patterns
of a generalized epileptic seizure, when the amplitudes of
the patterns can substantially exceed the amplitudes of the
spontaneous background signal. Intermediate values of SNR
cover most other cases. For simplicity, we use α = 0, and
equal SNR for both sources. Other parameters of M1 are not
relevant for the comparison and described in Sect. 5.2.

The results are shown for the mean of the PLI in Fig. 3a
and for the variance in Fig. 3b. It can be seen from the figures
that the mean and variance derived from D1 is accurate for
SNR above to 10 dB and at least fairly good for SNR above
–5 dB. It can also be seen from Fig. 3 that D2 accurately
describes the mean and variance for SNR < −12 dB.

5.2 Model M1: simulations

In this section, we investigate the PLI and CM for the sensi-
tivity to crosstalk through using simulations with real-valued
signals (1) and (2), i.e., the signals are not transformed into
their BESs. Furthermore, we discuss whether the PLI and CM
are in accordance with the intuitive requirements formulated
in Sect. 4.2.

5.2.1 Simulation parameters for M1

We recall that each CSS is modeled in a subband of width
� = 2 Hz. Furthermore, we analyze the CSSs in epochs of
length T = 10 s, for motivations see Sect. 3.3.

We define fs = 200 Hz that is a typical sampling fre-
quency for EEG recordings. Thus, all the simulations are
done for the number of samples K = T fs = 2, 000 (which
corresponds to K̃ = T � = 20 samples in the BESs).
Furthermore, we assume that f0 = 10 Hz and fc = 9.5 Hz
in the signals xq , which are some typical values for the EEG.
The exact values are, however, not relevant and do not affect
the results.
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Fig. 3 A comparison of the
analytically and empirically
computed mean and variance
of the PLI. Solid curves
corresponds to results of
simulations, dashed curves are
obtained using D1, and
horizontal solid lines
correspond to D2
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As mentioned in Sect. 3, the PLI as well as the CM are
insensitive to phases θq of signals sq of the model M1. There-
fore, we set θq = 0 in the simulations. (In M2, however, θq

may be relevant due to interference of multiple source sig-
nals.)

The constant α determines the amount of crosstalk for the
source signals in M1 and can be between 0 (no crosstalk) and
1 (maximal crosstalk). We assess typical values of α using a
four-layer spherical volume conductor of M2. For this vol-
ume conductor, all crosstalk constants are normalized to be
in the same range as for M1. To this end, they are divided
by the coefficient of projection from the sources to the cor-
responding electrodes, which are equal for all the sources.
Our estimate is that α < 0.5 for the standard 10–20 system.
In simulations we use α = {0, 0.1, 0.3, 0.5}. Each of these
values can be associated with the amount of crosstalk in one
of the following situations:

(a) α = 0 in the absence of crosstalk (or if it can be
neglected);

(b) α < 0.1 for distantly spaced electrodes in recordings
made with the Hjorth reference;

(c) α < 0.3 for neighboring electrodes in recordings with
the Hjorth reference;

(d) the case α ∼ 0.5 corresponds to denser electrode arrays
or ‘improperly’ chosen reference, e.g., the signal at Cz
electrode used as the common reference.

We analyze the mean and variance of the PLI γ , denoted
respectively by µ (γ ) and σ 2 (γ ), and compare them to those
of the CM g, denoted by µ (g) and σ 2 (g) for hypotheses H0

and H1 (see Sect. 4.2). Each of the hypotheses includes sev-
eral different scenarios and, therefore, is difficult to simulate
fully. For convenience, we use only two particular scenarios
in the simulations:

S0: SNR1 = 0, SNR2 = SNRp;
S1: SNR1 = SNR2 = SNRp,

(15)

where SNRp ∈ [−20, . . . , 20] dB is an a priori known param-
eter (corresponding to the assumption that SNR is a priori
known in signals xq ). The scenario S0 correspond to H0(b)
and the scenario S1 corresponds to H1 with an assumption
that SNR1 = SNR2. All measures are computed using Monte
Carlo simulations with 1000 different realizations of xq in
the model M1.

5.2.2 Simulation results for M1

The results are presented in Fig. 4 for different amounts of
crosstalk α. For α = 0, both measures are in line with intu-
itive ideas about measures of interdependency described in
Sect. 4.2. More precisely, Fig. 4a shows that µ (γ ) and µ (g)

computed under H1 asymptotically approach 1 for high SNR
and are small for low SNR. Fig. 4b shows that µ (γ ) and µ (g)

are small for the whole SNR range, α = 0 under H0. Further-
more, the measures are quite similar for α = 0 and become
different for α > 0.

Most prominently large α affects µ (γ ) and µ (g) under
H0, see Fig. 4b. For low SNR, however, this effect can be
reduced by increasing the time window or the frequency sub-
band (which means using a larger number of data samples
in the equivalent baseband signals), see (12) and (13). We
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Fig. 4 a The mean and
variance of the PLI (solid line)
and CM (dashed line) computed
under H1 and H0 for the model
M1. a Mean under H1; b mean
under H0; c variance under H1;
d variance under H0. The
closest pairs of solid and dashed
lines correspond respectively to
different α. The exact values are
shown in the figure
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remark that the difference between µ (γ ) and µ (g) can be
at most 0.1 for α = 0.5. It can also be seen from Fig. 4a, b
that µ (γ ) is slightly less sensitive to α compared to µ (g).

In Fig. 4c, σ 2 (γ ) and σ 2 (g) are shown under H1 and in
Fig. 4d they are shown under H0. Only the extreme situa-
tions with α = {0, 0.5} are shown. It can be seen from the
figures that the variances are also sensitive to α. The differ-
ence between σ 2 (γ ) computed for α = 0 and α = 0.5 is
bounded by approximately 0.01.

The difference between σ 2 (γ ) and σ 2 (g) is bounded by
approximately 0.004 and is the most significant for large α

under H0. We note that all the measures are approximately
constant across the full SNR range under H0 and for α = 0.
This is because the signals are completely mutually indepen-
dent in this case. We also note that the left parts of Fig. 4a,
c are similar to the left parts of Fig. 4b, d, which is due to
the very low SNR (and thus to the similarity between H0 and
H1).

In conclusion, the results suggest that the mean of the PLI
as well as that of the CM can be fairly used as a measure of
interdependency between CSSs when the amount of crosstalk
α is small. For a typical epoch length of 10 s, the variance for
the PLI and CM is sufficiently small compared to the mean,
so that reliable results can be obtained for the measures. Per-
formances for the PLI and CM are similar for small α, but
differences increase if α is large. Since it is difficult to iden-
tify unambiguously which of the measures is better, a more
thorough comparison is needed.

6 Direct comparison of the PLI and CM

We compare the PLI and CM based on the normalized var-
iance (NV) and contrast as defined in Sect. 4. To compute
these performance measures, we use Monte Carlo simula-
tions with 100 different realizations of xq in model M2 with
a priori given SNR.

6.1 Simulation parameters for M2

In the model M2, we use the same parameters for signals xq

as those in M1 described in Sect. 5.2. Two distinct situations
are simulated: the electrodes, below which the investigated
sources are located, are either spaced closely as {Fp1, F3}, or
far apart as {Fp1, T7}. For both situations, the locations are
chosen according to the worst-case scenario as described in
Sect. 2, i.e., for the largest amount of crosstalk. For the situ-
ation with sources located under {Fp1, T7}, L = {1, . . . , 4}
additional sources may have sq components in xq . These
sources are located below F8, Pz, Cz, and O1 electrodes,
which are also chosen according to the worst-case scenario
(if L = 1 then the source is located under F8; if L = 2, then
the sources are located under F8 and Pz, etc.). The phases θq

of the signals sq are taken either equal or chosen randomly
for each realization. The former corresponds to the worst-
case scenario as well, due to the largest interference of the
signals.
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Fig. 5 A ratio of normalized variances in dB. Light color corresponds to a better performance of the PLI and dark color to the CM. The figures
are made for the following configurations of the model M2: a L = 0; b L = 4. See the text for further details

6.2 Normalized variance

We compare the normalized variance (NV) as defined by
(9) for the PLI as well as CM using signals cq of M2 with
SNRq ∈ [−10, . . . , 20] dB, q = 1, 2. Additional L sources
generating oscillatory components s, if any, have SNR =
max

{
SNRq

}
, θq are equal. For the purpose of comparison,

we compute the following ratio that directly exposes the dif-
ference between the measures in dB:

W = 10 log

(
σ̂ 2 (ρ)

σ̂ 2 (η)

)

. (16)

The results are shown in Fig. 5a, b. Light color (W > 0) cor-
responds to better performance of the PLI, and dark color
(W < 0) corresponds to better performance of the CM. We
conclude that the measures are approximately equal in most
of the SNR range; the PLI is better for high SNR in both
signals; and the CM is better if one of the signals has high
SNR > 10 dB and another has SNR in the range [0, . . . , 10]
dB or if both signals have SNR < −5 dB. Note that a slight
asymmetry in the figures reflects asymmetry in crosstalk
between sources.

6.3 Contrast

Performances of the PLI and CM for detection purposes are
assessed through using the contrast η defined by (11). The
contrast η shows how reliably the hypothesis H1 can be dis-
tinguished from hypothesis H0 based on PLI γ or CM ρ, see
(11). In the simulations, we use the simplified hypotheses
(15).

For closely spaced sources {Fp1, F3}, it is found that η (γ )

as well as η (ρ) are always below 1.05 for L = 0, and that
they are below 1 for L > 0. Therefore, we conclude that H1
and H0 cannot be reliably distinguished when the sources

are located below neighboring electrodes. For this reason,
graphical results are not presented for {Fp1, F3}.

For distantly spaced sources {Fp1, T7}, the results are
shown in Fig. 6, for SNRp ≥ 0 dB. For SNRp < 0 dB, η (γ )

and η (ρ) are always below 1 and for this reason are not
shown.

In Fig. 6, two pairs of curves are shown. The pair (a) cor-
responds to L = 0; the pair (b) corresponds to L = 4 and
random phases θq . For L = 4 and equal θq , (the worst-case
scenario) the contrast is always below 1 (not shown).

It can be seen that η (γ ) is higher than η (ρ) except for very
high SNRp. Thus, we conclude that the PLI is better than the
CM in terms of the contrast, i.e., for detection purposes. We
also note that additional sources of sq can significantly affect
η (γ ) and η (ρ), especially when phases θq are equal. The
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Fig. 6 The contrasts η (γ ) (solid curve) and η (g) (dashed curve) com-
puted for signals recorded at Fp1 and T7 electrodes. The pairs of the
curves are marked by ellipses and correspond to the following situa-
tions: a L = 0; b L = 4, random θq
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Fig. 7 a, b Time courses of
two EEG channels (in subplots
2 s of the EEGs are zoomed to
show the spike-and-wave
patterns); c, d the spectrograms
computed for the channels
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latter is the case, e.g., when different cortical areas are
‘driven’ by the same subcortical structure with similar delays.
In this case, the PLI and CM are not appropriate for detection.

Furthermore, we observed that the contrasts computed for
the model M2 with L = 0 are similar to the contrasts com-
puted for M1 having an equivalent amount of crosstalk α (not
shown). Therefore, we conclude that M1 is a good approxi-
mation of M2 with L = 0.

7 Physiological EEGs

We also compare the PLI and CM for (patho) physiological
EEGs. The EEGs were recorded from adult patients suffer-
ing from temporal lobe epilepsies and having complex par-
tial seizures. The patients were implanted with intracranial
electrodes (intracerebral electrodes and subdural strips). The
recorded data is filtered with a pass band of 0.1–70 Hz and
then sampled at 200 Hz. For each patient we select episodes,
each containing 100 s of spontaneous EEG recorded before
the seizure onset and the seizure itself. For each episode, we
select the two channels with the most prominent epileptic
patters at the seizure onset. These channels are from differ-
ent strips so that crosstalk between the sources is very small.
Furthermore, the channels are free of artifacts.

The channels are split into epochs of length T = 10 s
with overlap �T = 2 s. For each epoch, the PLI and CM
are computed in subbands of bandwidth � = 2 Hz, with

overlap �� = 1 Hz, as described in Sects. 6–7. Parameters
�T and �� determine respectively the time and frequency
resolutions for the measures and are fixed at the typical val-
ues. The measures can be associated with ‘instantaneous’
interdependencies for pairs of subbands in the selected chan-
nels and, since the crosstalk is very small, they can be asso-
ciated with interdependencies of brain sources located close
to the electrodes.

7.1 Qualitative results

Figure 7a, b show the EEG channels for one of the patients.
Figure 7c, d show the spectrograms for these channels. For
the sake of comparison, the spectrograms are smoothed by
a weighted (Gaussian) moving average filter and normalized
to range [0, 1]. The figure shows that the seizure is associ-
ated with large amplitudes and oscillations with a dominant
frequency of about 6 Hz in both channels.

Figure 8a, b show time–frequency plots for the PLI and
CM, also smoothed and normalized for the sake of compar-
ison. It can be seen that the seizure is characterized by an
increase of the PLI and CM for a number of bands. Further-
more, the figure shows that the measures vary substantially
during the seizure. Figure 8a is similar to Fig. 8b, which
means that none of the measures has significantly better per-
formance, at least for this seizure. We note that Fig. 8a, b are
significantly different from Fig. 7c, d and therefore provide
additional information about the signals.
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Fig. 8 Time-fre–quency plots
a for the PLI and b for the CM

Figure 9a shows time courses of two simple seizure indi-
cators SImax (γ ) and SImax (g) computed for each epoch by
taking the maximum of respectively PLI γ and CM g across
all the subbands. Figure 9b shows time courses of two other
seizure indicators SIavrg (γ ) SIavrg (g) computed by aver-
aging γ and g across all the subbands. In both figures, it
can be seen that the indicators increase substantially dur-
ing the seizure and thus can be used for seizure detection.
We note that SImax (γ ) and SImax (g) are appropriate when
interdependency occurs in a narrow subband and SIavrg (γ )

and SIavrg (g) are appropriate when interdependency occurs
in multiple subbands simultaneously. For the analyzed EEG,
the γ -based indicators seem to perform slightly better then
the g-based indicators.

We remark that the results are obtained without any prior
knowledge about distribution of the interdependencies in dif-
ferent subbands. If such knowledge is available, than indica-
tors can be constructed having an improved performance.

7.2 Accuracy of the model M1

Let us assess the accuracy of the model M1 through com-
parison of results of simulations with experimental results.
We note that Fig. 3a and b show the dependence of the
mean and variance of the PLI on SNR in the modeled CSSs.
Thereby, the figures expose the mutual relation between the
mean and the variance of the PLI for different SNR. Let us

investigate whether the same relation exists for the PLI com-
puted using physiological EEGs. To this end, we compute the
(sample) mean µb (γ ) and variance σ 2

b (γ ) using the signals
recorded from the patient before the seizure and thus associ-
ated with the spontaneous background activity. For subband
5–7 Hz, which contains the dominant frequency, we obtain
µb (γ ) = 0.22, σ 2

b (γ ) = 0.01. Similarly, the mean and vari-
ance are computed using epochs recorded during the seizure:
µs (γ ) = 0.59, σ 2

s (γ ) = 0.03.
Figure 3 shows that both µb (γ ) and σ 2

b (γ ) correspond
to SNR of approximately −10 dB, meaning that the signals
of the model M1 are valid approximations for records of the
spontaneous background activity. We note that for this EEG
the channels show no interdependency in the subband under
consideration. Figure 3 also shows that µs (γ ) corresponds
to SNR of approximately 1–2 dB and σ 2

s (γ ) is larger than
any shown variance. This large variance can be explained by
non-stationary behavior of the PLI during the seizure. The
PLI does not fluctuate randomly around a particular value,
but has rapid “jumps” combined with slow trends which may
be associated with the brain state transitions.

7.3 Detection of epileptic seizures

Let us assess how reliably the spontaneous activity can be
discriminated from the epileptic activity using SIavrg (γ ) and
SIavrg (g). For this purpose, we compute the means µb
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Fig. 9 a Time courses of
SImax (γ ) and SImax (g) are
shown in circles and dots
respectively; b Time courses of
SIavrg (γ ) and SIavrg (g) are
shown in circles and dots
respectively
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(
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)
, where λ can be the PLI or

the CM, using epochs recorded respectively before and dur-
ing the seizure. We use ten epileptic EEGs recorded from
four patients. The PLI and CM are compared in terms of the
ratio r (λ) = µs

(
SIavrg (λ)

)
/µb

(
SIavrg (λ)

)
which indicates

how reliably the epileptic EEG can be distinguished from the
background EEG. Obviously, larger r corresponds to more
reliable discrimination between the epochs. (Since the vari-
ance appears to be large during the seizure we may not use
the contrast (11) which is an appropriate measure to discrimi-
nate stationary situations like in the simulations.) The results
are presented in Table 1 for all ten EEGs.

Table 1 shows that the PLI has slightly better performance
then the CM for nine of ten EEGs, and for one EEG the per-
formances are equal. This result is in line with the results of
simulations presented in Sect. 6. We also note that r > 1 for
all EEGs, meaning that interdependency increases during all
the seizures.

8 Discussion and conclusions

It is generally assumed that interdependencies of CSSs can
characterize the state of the brain network and might be
useful for detection purposes, e.g., for detection of epilep-
tic seizures. However, available knowledge about the brain
is insufficient to determine the ‘best’ measure of interdepen-

dency. Moreover, it is not clear how interdependencies of
CSSs are related to interdependencies of the EEG channels,
since each channel is some mixture of all CSSs.

One of the measures used for EEG analysis is the PLI.
Its usefulness has been confirmed experimentally, at least for
some EEGs. In this article, we investigate the PLI as a mea-
sure of interdependency of CSSs recorded in the EEG. We
investigate the PLI on a theoretical basis, by means of simple
analytical models. Furthermore, the PLI is compared with the
CM. The CM is based on a classical linear correlation func-
tion, which is the most widely used method for measuring
interdependencies.

Several main results emerge from this paper. We show that
passband signals, which are typically used in EEG analysis,
are equivalent to baseband signals with lower sampling fre-
quency and thus fewer samples within the same time internal.
Since the baseband signals are analytically tractable, they are
used for analysis of the PLI. Furthermore, the correspondence
between passband and baseband signals exposes the relation
between the bandwidth and the effective number of samples
in the passband signals—an issue which is sometimes over-
looked in the EEG-related literature (Xu et al. 2006).

An APDF is analyzed that expose behavior of the PLI for
different amounts of noise in CSSs and epoch lengths. It is
found that the APDF accurately characterize the mean and
variance of the PLI for a wide range of SNRs. The APDF can
be used to determine confidence intervals and significance
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Table 1 The ratios discriminating epileptic and background signals for ten different EEGs

Pt1 Sz1 Pt1 Sz2 Pt2 Sz1 Pt2 Sz2 Pt2 Sz3 Pt3 Sz1 Pt3 Sz2 Pt4 Sz1 Pt4 Sz2 Pt4 Sz3

r (γ ) 2.0 2.2 1.2 1.4 1.3 1.9 1.9 1.4 1.5 1.4

r (g) 1.7 1.8 1.2 1.3 1.2 1.8 1.8 1.3 1.4 1.2

levels for detection methods. In this respect, it can serve as a
fair alternative to empirical methods based on surrogate data
(Dolan and Spano 2001).

The sensitivity of the mean and variance of the PLI to the
amount of crosstalk between the sources (i.e., to the volume
conduction effect) is evaluated using Monte Carlo simula-
tions. It is found that crosstalk can affect the PLI (as well as
the CM) significantly. For instance, it is found that if more
than four distinct sources (i.e., cortical areas below differ-
ent electrodes) are coupled and therefore generate similar
oscillatory signals, then the locations of the sources cannot
be reliably detected from the scalp EEG using the PLI or
CM. Therefore, the measures should be used with caution.
They can be associated with a degree of interdependency of
the CSSs located below the corresponding EEG electrodes
only when a proper reference is used, such as the Hjorth ref-
erence (Hjorth 1975). This conclusion is in agreement with
(Guevara et al. 2005) where the drastic effect of the common
reference signal, which is associated with the large amount of
crosstalk, on phase synchrony, is shown. It should be noted
that two measures were recently proposed which are less
sensitive to the volume conduction effect than the coherence
and the PLI. The measures are the imaginary component of
coherence (Nolte et al. 2004) and the phase lag index (Stam
et al. 2007). These measures could be good alternatives to
the combination of the Hjorth reference and the PLI. How-
ever, these new measures should yet be analyzed for their
sensitivity to different signals and to different experimental
settings. It would also be useful to compare them to the PLI
using the setup used in this paper for the comparison of the
PLI with the CM.

The PLI is compared to the CM using a normalized vari-
ance (NV) and a novel statistical measure called contrast. The
NV exposes performances of the PLI and CM for estimation
problems; the contrast exposes performances for detection
problems. It is found that although the PLI and CM are quite
similar, the PLI performs better in some cases, especially in
terms of the contrast. We conclude that the PLI is slightly bet-
ter than the CM for both estimation and detection purposes,
which is in agreement with conclusions of other authors ana-
lyzing physiological EEGs, see e.g. (Quian Quiroga et al.
2002). In (Ansari-Asl et al. 2006; Kreuz et al. 2007), lin-
ear interdependency measures has been compared to a num-
ber of non-linear interdependency measures (including the
PLI) on a theoretical basis, using models and numerical

simulations. It was shown that none of the measures per-
form better than the other ones in all situations. This result is
obtained for different models and using different comparison
criteria than those used in this paper. For instance, the mod-
els used in the studies do not account for crosstalk between
different sources.

Finally, we analyzed physiological epileptic EEGs. We
found that the models used for simulations are accurate and
that the results of the simulations are in line with the results
obtained for the physiological EEGs. It is shown that PLI
complements conventional time-frequency representations
of the signals with additional information that can be used in
seizure detection methods. For instance, the PLI can be used
to construct new features that can be used in classifiers.

We notice that our analysis of the PLI is limited to deter-
ministic linearly interdependent signals in the presence of
additive Gaussian noise. This substantially simplifies the
analysis, and facilitates interpretation of the results. However,
the PLI was developed for more complex signals including
chaotic ones. We do not use prior information about the sig-
nals in the simulations and it is likely that results of the anal-
ysis carry over to other (more complex) signals as well. Since
the CM was developed for deterministic linearly interdepen-
dent signals, it is likely that it has moderate performance for
other (more complex) signals.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Analysis of the PLI

Let us analyze the sensitivity of the PLI to the white additive
Gaussian noise in the input signals. We consider two com-
plex-valued signals cq , q = 1, 2 of the model M1 (4) with
α = 0, i.e., without crosstalk. For α = 0, the signals cq can
be rewritten in the following way:

cq [k] = xq [k] = sq [k] + nq [k] = Aqe jϕq [k]

+Bq [k] e jφq [k], q = 1, 2, k = 1, . . . , K (17)

where sq [k]
�= Aqe jϕq [k] is an exponential signal with phase

ϕ [k]
�= 2πk f0/ fs + θq , and nq [k]

�= Bq [k] e jφq [k] is
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some white additive Gaussian noise with mean 0 and vari-
ance σ 2

(
nq

)
, fs is the sampling frequency, Aq , Bq , f0, fs ∈

R
+, θq , ϕq , φq ∈ R, k = 1, . . . , K . For the sake of sim-

plicity, we omit the time index k in the following formulas.
Our objective is to find the PDF for the PLI computed

for cq . Since the exact PDF appears mathematically intrac-
table for the general case, we use approximations. We pro-
ceed as follows. First we derive an APDF D1 for the case
Aq � σ 2

(
nq

)
. Then we derive a PDF D2 for the special

case Aq = 0. The accuracy of D1 and D2 is evaluated in
Sect. 5.1.

Mathematically, the phase of any non-zero complex num-
ber c, denoted as �c, equivalently can be computed as
Im (ln (c)). Therefore, it follows that:

�cq
�= Im

(
ln

(
cq

)) = Im
(

ln
(

Aqe jϕq + Bqe jφq
))

= Im

(

ln
(

e jϕq
)

+ ln
(

Aq
) + ln

(

1 + Bq

Aq
e j(φq−ϕq)

))

. . . = ϕq + �
(
1 + νq

)
,

where νq
�= Bq

Aq
e j(φq−ϕq) is some modified noise with dis-

tribution N
(
0, σ 2

(
νq

))
, where σ 2

(
νq

) �= σ 2(nq)
A2

q
. We notice

that the variance σ 2
(
νq

)
is the inverted SNR in the signal cq ,

and σ 2
(
νq

) � 1 since A2
q � σ 2

(
nq

)
.

Since σ 2
(
νq

)
is small, �

(
1 + νq

)
can be approximated

by Taylor expansion as

�
(
1 + νq

) = Im
(
ln

(
1 + νq

)) ≈ Im
(
νq

) + O
(
ν2

q

)
.

Ignoring high order terms, �
(
1 + νq

)
is distributed as

N
(

0,
σ 2(νq)

2

)
assuming that the real and imaginary parts of

nq , and therefore of νq , have the same variance.
Now we can write the phase difference of two signals

q = 1, 2 as:

�c1 − �c2 = �ϕ + � (1 + ν1) − � (1 + ν2) ≈ �ϕ

+ Im (ν1) − Im (ν2) = �ϕ + ν, (18)

where ν
�= Im (ν1) − Im (ν2) is approximately Gaussian

N
(
0, σ 2 (ν)

)
, and σ 2 (ν) = σ 2 (ν1) + σ 2 (ν2) because Im

(ν1) and Im (ν2) are independent.
Now let us consider the PLI for the signals c1 and c2 as

defined by (5):

γ
�=

∣
∣
∣

〈
e j(�c1−�c2)

〉∣
∣
∣ ,

where 〈·〉 denotes the average over time.
According to the approximation (18):

γ ≈
∣
∣
∣

〈
e j(�ϕ+ν)

〉∣
∣
∣ =

∣
∣
∣

〈
e jν

〉∣
∣
∣ .

Let us denote r
�= e jν for convenience. Since 〈r〉 is com-

puted by averaging of a large data set r , we may apply the
Central Limit Theorem. The Central Limit Theorem (CLT)
states that for sufficiently large size of data K , 〈r〉 approaches

the normal distribution N
(
µ (r) ,

σ 2(r)
K

)
, or equivalently

〈r〉 ≈ µ (r) + ω, where ω is N
(

0,
σ 2(r)

K

)
. We omit index r

for µ (r) and σ 2 (r) in formulas below for convenience.

It can be shown that Re (µ) = e− σ2(ν)
2 and Im (µ) = 0.

We denote the real and imaginary parts of ω as ωR and ωI

respectively, and the variances of them respectively as σ 2
R/K

and σ 2
I /K . In order to simplify computation of γ

�= |〈r〉| we
will use an approximation |〈r〉| ≈ |µ + ωR | which we will
justify shortly for σ 2 (ν) � 1. Given that the distribution of
ν is N

(
0, σ 2 (ν)

)
, the following expressions can be obtained:

σ 2
R

�= E
(
Re2 (r)

) − E (Re (r))2 = 1
2

(
1 − e−σ 2(ν)

)2;
σ 2

I
�= E

(
Im2 (r)

) − E (Im (r))2 = e−σ 2(ν) sinh
(
σ 2 (ν)

)
.

(19)

It should be noted that due to a non-linear transformation of
input noise ν, σ 2

R �= σ 2
I , i.e., the noise is unequally distrib-

uted among the real and imaginary parts of r .
Now, we can write:

γ
�= |〈r〉| = |µ + ωR + jωI | =

√

(µ + ωR)2 + ω2
I .

Furthermore, (µ + ωR)2 � ω2
I since σ 2 (ν) � 1 that justi-

fies the approximation:

|〈r〉| ≈
√

(µ + ωR)2 = |µ + ωR |.

Therefore, 〈r〉 ≈ µ + ωR and is approximately

〈r〉 ∼ N

(

µ,
σ 2

R

K

)

. (20)

Recalling that γ
�= |〈r〉|, we can obtain APDF for γ denoted

as D1 as a sum of two Gaussians that are (20) and its reflection

with respect to the ordinate axis N

(

−µ,
σ 2

R
K

)

. The APDF D1

is presented by (12).
Let us analyze the case Aq = 0 in (17), i.e., when the

exponential signals sq are absent. In this case, µ = 0 and
σ 2 = 1. The distribution of 〈r〉 follows immediately from
the CLT: 〈r〉 ∼ N (0, 1/K ). Finally, the PDF of γ = |〈r〉| is
known as Rayleigh distribution with the parameter b2 = 1

2K ,
assuming that the real and imaginary parts are independent.
This distribution is presented by (13). For this distribution,

µ = b
√

π
2 =

√
π

4K and σ 2 �= 4−π
2 b2 = 4−π

4K .
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